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Abstract

We analyze the infinite space solutions of the three-dimensional inhomogeneous wave equation (the �retarded pot-
entials� or �causal propagators�) for ellipsoidal sources and for sources of arbitrary shapes. The �short-time character-
istics� of the retarded potential for a spatially inhomogeneous source density of d-shaped time profile is considered.
It is found that, the short-time characteristics is governed by the spatial inhomogeneity of the source density in the
immediate vicinity of a spacepoint.

Surface integral representations are derived for spatial inhomogeneous source regions of ellipsoidal symmetry. For
spherical sources these integral representations yield closed form solutions for the retarded potentials. We find that the
wave field inside a spherical source consists of an incoming and outgoing spherical wave package, whereas the external
wave field consists of an outgoing spherical wave package only. Characteristic runtime and superposition effects are
discussed. Moreover, a numerical technique based on Gauss quadrature is applied to generate the wave field for a cubic
source. The integral representations derived for the retarded potentials of inhomogeneous ellipsoidal sources are
consistent with results previously derived by the authors for the Helmholtz potentials of homogeneous ellipsoids and
ellipsoidal shells [Michelitsch, T.M., Gao, H., Levin, V.M., 2003. On the dynamic potentials of ellipsoidal shells.
Q. J. Mech. Appl. Math. 56 (4), 629]. The derived solutions are crucial for many problems of wave propagation and
diffraction theory as they may occur in materials science. As an example we give a formulation for the solution of
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the retarded Eshelby inclusion problem due to spatially and temporally varying eigenfields in the elastic isotropic infinite
medium.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of wave propagation effects is a fundamental issue for many applications in science and
technology. Most of these problems can be reduced to the determination of the wave field in the sur-
rounding space of an emitter of a given spatial geometry and density. Despite of the importance of the
problem, there seems to be a lack of rigorous analytical approaches for the determination of retarded
potentials in the literature. The goal of this paper is to develop analytical expressions for the retarded
potentials due to a given spatial source distribution which may also be time dependent. Among all time
dependent source distributions, those of d-type time dependence represent an important class of prob-
lems which are worthy to be considered in detail. The goal of this paper is to derive compact integral
representations for the retarded potential of this problem class when the source region has ellipsoidal
symmetry. In electrodynamics this retarded potential plays a key role in the causal solution of the
Maxwell equations describing electromagnetic wave (light) propagation and radiation, scattering and
diffraction effects (see e.g. Jackson (1999)).

In materials science a vast literature is devoted to static problems. Examples can be found in the mechan-
ics of materials (Eshelby tensor), in electrodynamics (electrostatic potentials due to a charge distribution),
in astronomy (the gravitational potential caused by a mass distribution) and this list can be continued. The
determination of Newtonian potentials has been considered as a key issue of theoretical physics in the 19th
century. Key contributions to the subject were presented by several authors (Green, 1828; Caley, 1875a;
Caley, 1875b; Ferrers, 1877; Dyson, 1891; Hobson, 1896; Levin and Muratov, 1971; and Rahman, 2001
among others referenced therein). Ferrers (1877) derived a method to obtain the potential for polynomial
densities of ellipsoids and Dyson (1891) solved this problem in full generality in terms of a series of 1D-
integrals. Dyson�s solution was used by Levin and Muratov (1971) and Rahman (2001) to obtain the
Newtonian potential of heterogeneous ellipsoids and ellipsoidal shells. Hobson (1896) treated the potential
in the n-dimensional space. Eshelby (1957) showed that inclusion and inhomogeneity problems can be
reduced to determine two types of scalar (static) potentials of the region covered by the inclusion or inho-
mogeneity. Based on Eshelby�s classical work of 1957, much work was done to describe the mechanics of
microinhomogeneous materials in the static framework. Based on Dyson�s work (1891), Rahman (2002)
developed an elegant representation for the elastic fields of an ellipsoidal inclusion with polynomial eigen-

strain. There the elastic fields are expressed in terms of elliptic integrals. With this key solution the inclusion
problem was solved in principle for an inhomogeneous ellipsoidal inclusion of arbitrary density.

In material science the Helmholtz potentials are key quantities for the solution of the dynamic variant of
Eshelby�s inclusion problem and the dynamic Eshelby tensor (Michelitsch et al., 2003a; Wang et al., 2003, in
press). Despite the basic importance of the Helmholtz potential for dynamical problems, so far only little
attention is paid in the literature due to the considerable mathematical complexity of these problems. There
are only a few cases of source region geometries where closed form solutions of the inhomogeneous
Helmholtz equation were found, namely for homogeneous spheres (Mikata and Nemat-Nasser, 1990)
and for homogeneous continuous cylindrical fibers (Michelitsch et al., 2002, 2003a). Fu and Mura
(1982) have considered integrals for the determination of the dynamic potential of an ellipsoid of inhomo-
geneous densities. However their analysis remains confined to the quasi-static limiting case. Michelitsch
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et al. (2003a) have derived the dynamic Eshelby tensor of the three dimensional infinite space due to homo-
geneous eigenstrain of an ellipsoidal source region. In that paper the authors derived 2D integral represen-
tations for the Helmholtz potential. Wang et al. (2003) derived integral representations for elliptical
continuous fibers in piezoelectric material which correspond to a two-dimensional variant of the dynamic
inclusion problem. As for the Newtonian potentials in statics (Dyson, 1891; Ferrers, 1877), the main goal is,
from the esthetic and practical point of view, the determination of the dynamic potentials in terms of one-
dimensional integrals. So far this goal is achieved only for the Helmholtz potential of a homogeneous ellip-

soidal shell (Michelitsch et al., 2003b). As shown there, for vanishing frequency (static limit) the Helmholtz
potential corresponds to the Newtonian potential of the problem.

Due to the increasing amount of applications of dynamic processes in inhomogeneous materials (e.g.
‘‘smart materials’’) in newly emerging technologies, e.g. ‘‘smart structures’’ and non-destructive evaluation
(NDE), not only the frequency domain solution (Helmholtz potential) is of interest, its causal time repre-

sentation, namely the retarded potential, is also of crucial importance. Therefore, the goal of this paper is to
derive compact integral representations for retarded potentials of inhomogeneous ellipsoidal source regions

and to derive closed form solutions in degenerate cases (spherical sources).
The paper is organized as follows: in Section 2 we derive a compact (two-dimensional) surface integral

representation for the retarded potential of a spatially inhomogeneous ellipsoidal source region by evaluating
the convolution of the retarded Green�s function over the source density. This representation yields closed
form results for the degenerate case when the source region becomes a (inhomogeneous) sphere. By means
of this closed form expression, characteristic wave-propagation and superposition effects of the wave field
are discussed.

The retarded potential of a source of arbitrary shapes is evaluated numerically in Section 3 by means of a
source of cubic symmetry. The numerical scheme which is based on Gauss quadrature is useful to be ap-
plied to inhomogeneous sources of arbitrary shapes and source densities.

A general expression for the short-time characteristics of an arbitrary spatial source density of d-type
time dependence is derived in Section 4 and related to the local spatial inhomogeneity of the source density.

As an application in solid mechanics we give in Section 5 a formulation for the causal time-domain solu-
tion of the dynamic variant of Eshelby inclusion problem in terms of retarded potentials.
2. Retarded potential of an inhomogeneous ellipsoidal source distribution

The basic problem we consider is defined by an inhomogeneous wave equation in the infinite three-
dimensional space and has the form
1 T
2 H
D � 1

c2

o

ot
þ c

� �2
 !

�g þ qðr; tÞ ¼ 0 ð1Þ
where D ¼ o2

ox2 þ o2

oy2 þ o2

oz2 denotes the Laplacian, r = (xi) = (x,y,z) indicate spatial Cartesian coordinates and
q(r, t) the source density; c denotes the constant wave propagation velocity and c > 0 is a positive damping
constant which guarantees causal behavior (see e.g. Michelitsch et al. (2002, 2003a)). We assume a source
density q(r, t) with d(t)-time dependence, being non-zero only inside the ellipsoid having the form 1
qðr; tÞ ¼ Hð1 � PÞf ðP 2ÞdðtÞ ð2Þ

where H(n) denotes the Heaviside step function 2 and
he approach derived can easily be extended to general non-local cases q = q(P2) where the only constraint is �d3rq(r) < 1.
(n) = 1 if n > 0 and H(n) = 0 if n < 0.
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P 2 ¼ x2

a2
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þ y2

a2
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þ z2

a2
3

ð3Þ
a = (ai) denotes the set of semi axes of the ellipsoid. P < 1 and P > 1 characterizes the internal and external
space of the ellipsoid, respectively.

In view of (1) we rewrite �g ¼ e�ctg where g denotes the retarded potential and solves
D � 1

c2

o2

ot2

� �
g þ qðrÞdðtÞ ¼ 0 ð4Þ
where we emphasize that we only look for the causal (retarded) solution of (4).
Generally the retarded potential g can be expressed as a convolution of the retarded Green�s function ĝ

and the source density, namely
gðr; a; tÞ ¼
Z Z

ĝðjr� r0j; t � t0Þqðr0; t0Þd3r0 dt0 ð5Þ
The retarded Green�s function is given by (e.g. Jackson, 1999)
ĝðr; tÞ ¼
d t � r

c

� 	
4pr

ð6Þ
and solves
D � 1

c2

o2

ot2

� �
ĝðr; tÞ þ dðtÞd3ðrÞ ¼ 0 ð7Þ
which describes a singular spherical wave being non-zero only at t ¼ r
c which is the runtime from the source

point (located at the origin r = 0) to the sphere r on which the spacepoint r is located. A consequence of (6)
is Huygen�s principle which indicates that any source point emits spherical waves.

Singular waves of the form (6) are denoted in the following as �elementary waves�. With the density
(2),(5) takes the form (by putting r0 ¼ ðx0iÞ ¼ ðP 0ain0iÞ, with n 0 Æ n 0 = 1 and d3r 0 = a1a2a3dX(n 0)P

02 dP 0) 3
gðr; a; tÞ ¼ a1a2a3

4p

Z
jn0 j¼1

dXðn0Þ
Z 1

0

dðt � jr�r0 j
c Þ

jr� r0j f ðP 02ÞP 02 dP 0 ð8Þ
To evaluate this integral we make use of the identity (we have to consider only the case t > 0 which is
expressed by a prefactor H(t))
�HðtÞ
8p2c

o

ot

Z
jk̂j

dXðk̂Þd t � k̂ 	 n
c

 !
¼ HðtÞ

4pn
d t � n

c

� �
þ d t þ n

c
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¼ HðtÞ

4pn
d t � n

c

� �
ð9Þ
where n = jnj. With (9) we can write (8) in the form (r0 ¼ ðP 0a0in
0
iÞ) by putting n = jr � r 0j
gðr; a; tÞ ¼ �HðtÞa1a2a3

8p2c

Z 1

0

f ðP 02ÞP 02 dP 0 o

ot

Z
jk̂j

dXðk̂Þ
Z
jn0 j¼1

dXðn0Þd t � k̂ 	 ðr� r0Þ
c

 !
ð10Þ
We evaluate first the second integral in this expression, namely (by putting r0 	 k̂ ¼ sðk̂ÞP 0u with sðk̂Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1k̂1Þ2 þ ða2k̂2Þ2 þ ða3k̂3Þ2

q
and u = cosh, dX(n 0) = dh sinhdu)
tegrals �jmj=1 dX(m)(. . .) are performed on the surface of the unit sphere m Æ m = 1.
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c
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 !
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c

 !( )
ð11Þ
By using (11), expression (10) takes the form (where the symmetry of the integrand allows us to replace
k̂ ! �k̂)
gðr; a; tÞ ¼
Z 1

0

f ðP 02ÞP 0Uðr; a; t; P 0ÞdP 0 ð12Þ
where
Uðr; a; t; P 0Þ ¼ HðtÞa1a2a3

4p

Z
jk̂j¼1

dXðk̂Þ
sðk̂Þ

d t � k̂ 	 rþ P 0s
c

 !
� d t þ k̂ 	 rþ P 0s

c

 ! !
ð13Þ
We observe that U(r,a, t,P 0)P 0 corresponds to the retarded potential of an ellipsoidal shell of an ellipsoid
with semi-axes P 0ai solving the wave equation
D � 1

c2

o2

ot2

� �
ðUðr; a; t; P 0ÞP 0Þ þ dðP � P 0ÞdðtÞ ¼ 0 ð14Þ
Relations (12) and (13) coincide with those obtained previously (see Michelitsch et al., 2003a,b) which
were derived by means of Fourier transformation technique. By exploiting the relation
Z 1

0

f ðP 02ÞP 0 dðP 0 � nÞ � dðP 0 þ nÞð Þ ¼ f ðn2ÞnHð1 � n2Þ ð15Þ
we obtain for (12) the two-dimensional integral
gðr; a; tÞ ¼ ca1a2a3HðtÞ
4p

Z
jn̂0 j¼1

dXðn0Þ
r03

ðct þ n0 	 rÞf ðct þ n0 	 rÞ2

r02

 !
H 1 � ðct þ n0 	 rÞ2

r02

 !
ð16Þ
where we have put r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1n
02
1 þ a2

2n
02
2 þ a2

3n
02
3

p
. Eq. (16) holds for the entire (internal and external) space.

The advantage of expression (16) in contrast to the initial three-dimensional integration problem (8), is
obvious. Unlike (8), Eq. (16) is only a two-dimensional integral with a non-singular integrand.

2.1. Spherical source

Let us now consider the degenerate case of a spherical source region with ai = a (P ¼ r
a). In this case (16)

can be evaluated in closed form and yields after a routine calculation
gðr; a; tÞ ¼ ca2HðtÞ
4r

F ð1Þ � F
ðr � ctÞ2

a2

 !" #
H 1 � ðr � ctÞ2

a2

 !(

� F 1ð Þ � F
ðr þ ctÞ2

a2

 !" #
H 1 � ðr þ ctÞ2

a2

 !)
ð17Þ
where F and f are related by f ðkÞ ¼ dF ðkÞ
dk . Eq. (17) holds for both the internal and external space, and has

the form g = g(1)(r + ct,a)/r + g(2)(r � ct,a)/r, which describes the superposition of an outgoing and an
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incoming spherical wave. In Figs. 1 and 2 the positive parts of the parabolic arguments y1 and y2 of the
H-functions of (17) are drawn. They propagate in the radial and anti-radial direction, respectively, indicat-
ing where the wave field is non-zero (Figs. 1,2). The quantities yi are symmetric with respect to exchanging
r M ct. Hence Figs. 1 and 2 can be either conceived as yi vs. ct-plots at a specific spacepoint (sphere) r or as
yi vs. r-plots at a specified ct. We observe that we have only in the internal space a non-zero overlap where
incoming and outgoing waves interfere. This interference takes place only for times smaller than 2a/c which
determines the time range of the existence of a non-vanishing wave field in the internal space.

For external spacepoints where no incoming wave g(1)/r can build up, the superposition of elementary
waves (6) can cause an outgoing wave g(2)/r only. This is indicated in (17) by the vanishing of the second
H-function for r > a.
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Hence we can summarize the following properties: in the internal space the wave field is governed by the
superposition g = g(1)/r + g(2)/r of an incoming and outgoing wave field as indicated by Fig. 1. 4 For run-
times greater than 2a/c, i.e. when the wave field has left the source region, only the outgoing wave package
exists, propagating with velocity c having wave-length 2a (Fig. 3). The vanishing of the incoming wave field
can also be interpreted in view of Fig. 2: if t > 2a/c the incoming wave field has moved into the (unphysical)
region r < 0.

Let us confirm some necessary properties of (17) which follow directly from (8). To this end we consider
the special case of a positive source function f(k) > 0 for 0 < k < 1. According to relation (8), the retarded
potential can only take positive values in this case. To confirm this we consider expression (17): for f(k) > 0
its antiderivative F(k) is a monotonous increasing function with the property
4 A
5 A
Z 1

ðr�ctÞ2

a2

f ðkÞdk ¼ F ð1Þ � F
ðr � ctÞ2

a2

 !
> 0; if 1 � ðr � ctÞ2

a2
> 0 ð18Þ
being a positive quantity if H 1 � ðr�ctÞ2

a2

� �
¼ 1. For the external space r > a we observe that the second

H-function in (17) indicating the incoming wave, is identically vanishing "t > 0. Hence for the external
space r > a we have only
goutðr; a; tÞ ¼ ca2HðtÞ
4r

F 1ð Þ � F
ðr � ctÞ2

a2

 !" #
H 1 � ðr � ctÞ2

a2

 !
ð19Þ
which is according to (18) either positive or zero. Eq. (19) has the form gout = g(2)(r � ct,a)/r which de-
scribes an outgoing spherical wave package propagating with velocity c without dispersion with stable
wavelength 2a. 5 The incoming wave g(1)(ct + r,a)/r of (17) is absent in the external space. As

H 1 � ðr�ctÞ2

a2

� �
¼ 1 only for r � a < ct < a + r (Fig. 2), we observe from (19) that the outgoing wave arrives

at the spacepoint r only at t1 = (r � a)/c which is the runtime from the closest source point on the boundary
of the sphere. For t < t1, due to the finite wave speed c, the wave has not yet reached the spacepoint r thus
s ct and r occurs in the H-functions in (17) symmetrically we can interpret Figs. 1 and 2 as space or time plots.
s c is a constant, no dispersion effects can occur.
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gout = 0. This runtime effect which is due to the outward propagation of the wave front also occurs in two
dimensions (Wang et al., 2003).

In the internal space in the time range 0 < ct < a � r (see Fig. 1) both H-functions in (17) are equal to 1.

Since 1 � ðr�ctÞ2

a2 > 1 � ðrþctÞ2

a2 , the outgoing and incoming waves then interfere and the sign of (17) is deter-
mined by
6 S
A deta

7 In
F ð1Þ � F
ðr � ctÞ2

a2

 !
� F ð1Þ � F

ðr þ ctÞ2

a2

 ! !

¼ F
ðr þ ctÞ2

a2

 !
� F

ðr � ctÞ2

a2

 !

¼
Z ðrþctÞ2

a2

ðr�ctÞ2

a2

f ðkÞdk > 0 ð20Þ
This integral is positive since ðrþctÞ2

a2 > ðr�ctÞ2

a2 , i.e. also in the time range 0 < ct < a � r.

For a � r < ct < a + r is only 1 � ðr�ctÞ2

a2 > 0, whereas 1 � ðrþctÞ2

a2 < 0 (see Fig. 1). Then the internal wave
field consists of the outgoing wave only and is given by (19) which is positive because of (18) whereas
the incoming wave is vanishing.

For ct > a + r both H-functions are zero thus the wave field is identically vanishing. This is true for the
internal and external space (see Figs. 1 and 2). This can be interpreted again as a runtime effect: for
ct > a + r which is larger than the runtime to the most distant source point, all elementary waves
ĝðjr� r0j; tÞ emitted in the source region have passed by the spacepoint r and hence the wave field is van-
ishing. This effect is a speciality of the three-dimensional space and does not occur in two dimensions. 6 In
two dimensions the wave field decays smoothly to zero for t ! 1 instead of vanishing sharply at ct = a + r

(Wang et al., 2003). With (18) and (20) we have confirmed that the necessary condition g(r,a, t) � 0 if
f(P2) > 0 is fulfilled by expression (17) in the entire space. In conclusion of the above considerations we
can rewrite the internal potential in the form
ginðr; a; tÞ ¼ ca2HðtÞ
4r

F
ðr þ ctÞ2

a2

 !
� F

ðr � ctÞ2

a2

 !( )
Hða� r � ctÞ

"

þ F ð1Þ � F
ðr � ctÞ2

a2

 !( )
ðHðct þ r � aÞ � Hðct � r � aÞ

#
ð21Þ
Especially interesting is the case of a homogeneous source f(P2) = 1. Then (17) yields 7
g0ðr; a; tÞ ¼ Hða� rÞgin
0 ðr; a; tÞ þ Hðr � aÞgout

0 ðr; a; tÞ ð22Þ

gin
0 ðr; a; tÞ ¼ c2tHða� r � ctÞ þ c

4r
ða2 � ðct � rÞ2ÞðHðct þ r � aÞ � Hðct � r � aÞÞ ð23Þ
If we consider a fixed spacepoint r < a we see that (23) describes at first a linear increase in time for
0 < ct < a � r. Then the wave field passes continuously into an outgoing wave package for
a � r < ct < a + r (Figs. 3 and 4). The solution for the external space then is given by (Eq. (19))
ince the retarded 2D Green�s function is ĝ2ðjr� r0j; tÞ ¼ Hðt�jr�r0 j
c Þ

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�jr�r0 j2

c2

q tending smoothly to zero, but being non-zero "t > jr � r0j/c.
iled discussion can be found in Wang et al., 2003.
the following we denote gm the retarded potential of the source density P2m, m = 0,1,2, . . ..
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gout
0 ðr; a; tÞ ¼ ca2HðtÞ

4r
1 � ðr � ctÞ2

a2

" #
H 1 � ðr � ctÞ2

a2

 !
ð24Þ
which is non-zero only in the time range r � a < ct < r + a and describes an outgoing wave package of wave
length 2a.

It will be shown in Sections 3 and 4 that the linear characteristics in the time range 0 < ct < a � r is
typical for a spatially homogeneous source (i.e. f = 1), independent on the shape of the inclusion. 8 More-
over, it was shown recently that this characteristics also occurs in two dimensions (Wang et al., 2003;
Michelitsch et al., 2002). This linear characteristics can be physically interpreted as the homogeneous super-
position of spherical elementary waves emitted on spheres of radii ct which are completely located within

the source region. In Section 4 we will consider thoroughly the relation between the local spatial inhomo-
geneity of the source density and the short-time characteristics of the wave field immediately after the exci-
tation at t = 0.
3. Retarded potentials of source regions with arbitrary shapes

In this section we utilize a numerical scheme which is useful to determine the retarded potentials of
source regions with arbitrary shapes. This is demonstrated by means of a homogeneous source of cubic
symmetry (Figs. 5 and 6). The numerical scheme consists in evaluating convolution (8). A detailed analysis
of the wave field due to an arbitrary source will be given in Section 4.

The numerical scheme is useful for arbitrary spatial densities q(r, t) but we specialize it here to the cases
q(r, t) = q(r)d(t).

First of all we consider the direct integration of the convolution (8), and specify the source region S as
follows.

1. Its lower and upper limits in the x-direction, we denote as xl,xu.
2. Its lower and upper limits in the y-direction at a specified value of x, we denote as yl(x),yu(x).
3. Its lower and upper limits in the z-direction at specified values of x and y, we denote as zl(x,y),zu(x,y).
nly the time range in which this behavior occurs depends on the shape and spacepoint.
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Once these lower and upper limits along different axes are known, according to (8), we have
g ¼
Z
S
ĝðjr� r0j; tÞqðr0Þd3r0 ¼

Z xu

xl

dx0
Z yuðx0Þ

ylðx0Þ
dy0
Z zuðx0 ;y0Þ

zlðx0 ;y0Þ
dz0ĝðjr� r0j; tÞqðr0Þ ð25Þ
where we use the approximation
ĝðr; tÞ ¼ dðt � r=cÞ
4pr

¼ lim
e!0þ

e�ðt�r=cÞ2=ð4eÞ

8pr
ffiffiffiffiffi
pe

p ð26Þ
To compute approximately the above integral, we use the Gauss–Chebyshev quadrature formula (e.g.
Press et al., 1992), in which the abscissa and weights for the interval [�1,1] are
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sk ¼ cos
pk � p=2

N

� �
; k ¼ 1; 2 ; . . . ; N

wk ¼
p
N

ð27Þ
where N indicates the number of sampling points. Thus, for a function h(x) defined within [�1,1], we have
the integral formula of the form
Z 1

�1

hðxÞdx 

XN
k¼1

wk

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

k

q
hðskÞ ð28Þ
The quadrature is exact for all polynomials of degree 2N � 1 (e.g. Press et al., 1992). In order to compute
the integrals within a different domain, such as [xl,xu], we introduce
sk ¼
xu � xl

2
cos

pk � p=2

Nx

� �
þ xu þ xl

2
; k ¼ 1; 2; . . . ; Nx

wk ¼ p
xu � xl

2Nx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos2

pk � p=2

Nx

� �s
¼ p

xu � xl

2Nx
sin

pk � p=2

Nx

� � ð29Þ
and take into account that
Z xu

xl

hðxÞdx 

XNx

k¼1

wkhðskÞ ð30Þ
Furthermore, for domains [yl(sk),yu(sk)] and [zl(sk, skj),zu(sk, skj)] we define
skj ¼
yuðskÞ � ylðskÞ

2
cos

pj� p=2

Ny

� �
þ yuðskÞ þ y lðskÞ

2

wkj ¼ p
yuðskÞ � ylðskÞ

2Ny
sin

pj� p=2

Ny

� �

skjm ¼ zuðsk; skjÞ � zlðsk; skjÞ
2

cos
pm� p=2

Nz

� �
þ zlðsk; skjÞ þ zuðsk; skjÞ

2

wkjm ¼ p
zuðsk; skjÞ � zlðsk; skjÞ

2Nz
sin

pm� p=2

Nz

� �
ð31Þ
where j = 1,2, . . .,Ny and m = 1,2, . . .,Nz. Then integral (25) becomes approximately (r 6¼ r0kjm)
gðr; tÞ 

XNx

k¼1

XNy

j¼1

XNz

m¼1

wkwkjwkjmĝðjr� r0kjmj; tÞqðr0kjmÞ ð32Þ
where r0kjm ¼ ðsk; skj; skjmÞ and ĝðr; tÞ are defined by (26).
3.1. Cubic source

We demonstrate the efficiency of (32) by means of a homogeneous cubic source with density
q = d(t)H(a2 � x2)H(a2 � y2)H(a2 � z2) which takes the value q = d(t) inside the cube (jxij < a). In Fig. 5
the wave field is drawn for different times t after the excitation at t = 0 by employing (32) for
Nx = Ny = Nz = 120. Fig 5 indicates for internal spacepoints at times 0 < ct < a � x a linear characteristics
c2t (c = 0) which is a consequence that the source is spatially homogeneous inside the source. We will ana-
lyze the relation between the spatial inhomogeneity of the source and the short-time characteristics of the
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wave field in Section 4. Fig. 5 shows the propagation of the wave package for different times t along a sym-
metry-axis (x-axis) of the cube. Taking into account that the distance of the emission point (a, 0,0) of the
cube in x-direction to its furthermost source points (�a,±a,±a) is

ffiffiffi
6

p
a 
 2:45a, we can conclude that the

wavelength of the projection of the wave package on the x-direction which occurs for ct > ct1 ¼
ffiffiffi
6

p
a is

given by this distance
ffiffiffi
6

p
a 
 2:45a. This is a consequence that any source point emits spherical singular

elementary waves of the form (6) which reflects Huygen�s principle. t1 is the time which takes a spherical
elementary wave from the source points (�a,±a,± a) to the emission point (a, 0,0) along the x-axis. The
wavelength

ffiffiffi
6

p
a 
 2:45a of the projection of the wave field onto the x-axis is also indicated in Fig. 5

(see the wavelength of wave package at time ct 
 2.94a). Fig. 6 shows the space–time plot of whole prop-
agation process of this wave field.

This example indicates that relation (32) provides an efficient and accurate tool to approximate retarded
potentials for sources of arbitrary shapes and densities.
4. Short-time characteristics for arbitrary spatial source densities

In this section we examine the retarded potential of a spatially arbitrary inhomogeneous source density
distribution of the form q(r, t) = d(t)q(r) 9 in order to describe the characteristics of the wave field for
‘‘small’’ times t after the excitation at t = 0. The retarded potential of this problem is given by
9 W
10 G

charac
11 C
gðr; tÞ ¼ c
4p

Z
d3r0

dðjr� r0j � ctÞ
jr� r0j qðr0Þ ð33Þ
It is convenient to introduce the following coordinates r 0 = rs + r where rs ¼ rsn̂, with n̂ 	 n̂ ¼ 1 and
d3r0 ¼ r2

s drsdXðn̂Þ. Vector rs parameterizes the space and we can write
gðr; tÞ ¼ c
4p

Z
jn̂j¼1

dXðn̂Þ
Z 1

0

qðrþ rsn̂Þrsdðct � rsÞdrs ð34Þ
The rs-integration yields the surface integral
gðr; tÞ ¼ c2tHðtÞ
4p

Z
jn̂j¼1

dXðn̂Þqðrþ ctn̂Þ ð35Þ
The H(t)-function indicates that the wave field exists only for t > 0 (causality). For a homogeneous density
q = 1 (inside a certain source region S) the above linear characteristics g0 = c2tH(t) is recovered by (35).

Expression (35) holds for an arbitrary spatial source distribution function q(r). Especially for a localized
source region, this integral holds for the internal and external space. Let us consider integral (35) in more
detail. Assume that q is smooth enough that it can be expanded into a Taylor series 10
qðrþ ctn̂Þ ¼
X1
n¼0

ðctÞn

n!
ðn̂ 	 rrÞnqðrÞ ð36Þ
where rr ¼ ð o
oxi
Þ. We notice that only even powers n = 2m of the series (36) 11 contribute to integral (35) so

that we can write
ith the only constraint that the integral � d3rq(r) < 1.
enerally this series converges only for enough ‘‘small’’ times t > 0, in this sense (36) describes only the ‘‘short-time’’

teristics of the retarded potential.
orresponding to q̂ ¼ 1

2 ðqðrþ ctm̂Þ þ qðr� ctm̂ÞÞ.
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gðr; tÞ ¼ c2tHðtÞ
4p

X1
m¼0

ðctÞ2m

ð2mÞ!

Z
jn̂j¼1

dXðn̂Þðn̂ 	 rrÞ2mqðrÞ ð37Þ
Expanding ðn̂ 	 rrÞ2m into a multinomial series yields
gðr; tÞ ¼ c2tHðtÞ
4p

X1
m¼0

ðctÞ2m

ð2mÞ!
X1

p0þq0þr0¼2m

ð2mÞ!
p0!q0!r0!

I2m
p0q0r0

o
2m

oxp0oyq0ozr0
qðrÞ ð38Þ
where
I2m
p0q0r0 ¼

Z
jn̂j¼1

dXðn̂Þnp
0

1 n
q0

2 n
r0

3 ð39Þ
and p 0 + q 0 + r 0 = 2m. It can easily be shown when introducing spherical coordinates that I2m
p0q0r0 is non-zero

only if p 0,q 0, r 0 are all even, thus only terms with p 0 = 2p, q 0 = 2q, r 0 = 2r (p + q + r = m) contribute (Mich-
elitsch et al., 2003b). Hence (38) can be rewritten as
gðr; tÞ ¼ c2tHðtÞ
4p

X1
m¼0

ðctÞ2m

ð2mÞ!
X1

pþqþr¼m

2m!
2p!2q!2r!

I2m
2p2q2r

o
2m

ox2poy2qoz2r
qðrÞ ð40Þ
Thus we only have to consider the integrals I2m
2p2q2r (p + q + r = m, m = 0,1,2, . . .) which we conveniently

rewrite in the form
I2m
2p2q2r ¼

Z
jn̂j¼1

dXðn̂Þn2p
1 n2q

2 n2r
3 ¼ 1

ð2mÞ!
o2m

on2p
1 on2q

2 on2r
3

Im ð41Þ
where we have introduced n = (ni) and
Im ¼
Z
jn̂j¼1

dXðn̂Þðn 	 n̂Þ2m ¼ 4p
ð2mþ 1Þ ðn

2
1 þ n2

2 þ n2
3Þ

m ð42Þ
thus we find for (41) with p + q + r = m
I2m
2p2q2r ¼

4p
ð2mþ 1Þ

m!
p!q!r!

ð2pÞ!ð2qÞ!ð2rÞ!
ð2mÞ! ð43Þ
Hence we can write for (40)
gðr; tÞ ¼ cHðtÞ
X1
m¼0

ðctÞ2mþ1

ð2mþ 1Þ!D
mqðrÞ ð44Þ
where we have taken into account the multinomial expansion of the Laplace operator D ¼ o2

ox2 þ o2

oy2 þ o2

oz2 and
D0 =: 1. It follows from (44) that the short time-characteristics of the wave field at a spacepoint r depends on
the local spatial characteristics of the density function at this spacepoint. That is if the density has a local
expansion (for jr � r0j ! 0) of the form
qðrÞ ¼
X1
n¼0

X
ðp0þq0þr0Þ¼n

ap
0q0r0

n ðx� x0Þp
0
ðy � y0Þ

q0 ðz� z0Þr
0
; ð45Þ
then a non-vanishing even term (x � x0)
2p(y � y0)

2q(z � z0)
2r (p + q + r = m, m = 0,1,2, . . .) of total order

2m contributes in the limiting case jr � r0j ! 0 only with a power t2m + 1 to the short-time characteristics of
the retarded potential at spacepoint r (Eq. (44)). Moreover, we observe that terms in (45) of the form
(x � x0)

p 0
(y � y0)

q 0
(z � z0)

r 0 where at least one of the numbers p 0,q 0, r 0 is odd do not contribute to the
short-time characteristics (44) of the potential in the limiting case jr � r0j ! 0. Furthermore, a monomial



64 T.M. Michelitsch et al. / International Journal of Solids and Structures 42 (2005) 51–67
density q(r) = xpyq zr (p + q + r = n) yields a polynomial short-time characteristics at the spacepoint r of
degree 2m + 1 in time, where either 2m = n if n is even or 2m = n � 1 if n is odd.

As an example we recall briefly Eq. (21) for a spherical source region with a density q = H(1 � P)P2m,
(P = r/a) and consider its short-time characteristics at r = 0. The retarded potential (17) then yields
gin
m ¼

c
4ðmþ 1Þa2mr

ððct þ rÞ2mþ2 � ðct � rÞ2mþ2Þ; 0 6 ct 6 a� r

c
4ðmþ 1Þa2mr

ða2mþ2 � ðct � rÞ2mþ2Þ; a� r 6 ct 6 aþ r

0; aþ r 6 ct

8>>>><
>>>>:

ð46Þ
and for the external space (r > a)
gout
m ¼

0; 0 6 ct 6 r � a
c

4ðmþ 1Þa2mr
ða2mþ2 � ðct � rÞ2mþ2Þ; r � a 6 ct 6 aþ r

0; aþ r 6 ct

8>><
>>: ð47Þ
The short time-characteristics is given by (46)1 which holds for (0 < ct < a � r). It follows that it is a poly-
nomial of degree 2m + 1 in time in the internal space. Let us consider the short-time characteristics in the

origin r = 0. In the vicinity of r = 0 the expansion (45) of the density q ¼ ðx
2
0

a2
1

þ y2
0

a2
2

þ z2
0

a2
3

Þm contains only terms

(x � x0)
2p(y � y0)

2q(z � z0)
2r (r = 0), thus according to our observation the short-term characteristics of the

wave field at r = 0 should be governed only by the power t2m + 1. In view of (46)1 we indeed obtain for r = 0
the only term (for 0 < t < a/c)
gmðr ¼ 0; tÞ ¼ c
ðctÞ2mþ1

a2m
ð48Þ
which is in full agreement with (44). The case m = 0 of a homogeneous sphere having a linear short-time
characteristics g0(r = 0,t) = c2t (for 0 < t < a/c) is also covered by (48).
5. Dynamic variant of Eshelby�s inclusion problem

As an application of the retarded potentials derived in the above sections we consider here the retarded
variant of the dynamic Eshelby�s inclusion problem in the three-dimensional infinite linear elastic medium.

We consider a material with elastic constants Cijrs and mass density qm and assume that these material
characteristics are identical in both the homogeneous matrix and the inclusion. This material system has the
constitutive relations
rij ¼ Cijrsð�rs � ��rsÞ ð49Þ

where r,�,�*,C denote stress, strain, eigenstrain and the tensor of elastic constants, respectively, and
�rs ¼
1

2
ðorus þ osurÞ ð50Þ
The inclusion S is assumed to undergo a non-uniform space–time transformation with an eigenstrain �*
of the form
��ðr; tÞ ¼ qðr; tÞ�0 ð51Þ
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with a ‘‘density’’ function q given by 12
12 T
13 H
14 A
qðr; tÞ ¼ HsðrÞvðr; tÞ ð52Þ

where Hs(r) denotes the characteristic function of the inclusion 13 and �0 is a symmetric and constant tensor.
In (52) we have introduced the scalar function v(r, t) which characterizes the space–time variation of the
eigenstrain. We assume the absence of external body forces. Then the equations of motion are given by
qm
o

2

ot2
ui ¼ ojrij ð53Þ
where qm denotes the mass density of the material and u the displacement field. With (49) and (50) this equa-
tion assumes the form
T ðrÞ � qm
o2

ot2
1

� �
uðr; tÞ þ f�ðr; tÞ ¼ 0 ð54Þ
where Tij($) = Cikjlokol, 1 is the 3 · 3 unity tensor and f *(r, t) is the effective force density that induces the
same displacement field u in the undisturbed matrix as the inclusion and is given by
f �
i ðr; tÞ ¼ �Cijrs�

0
rsojqðr; tÞ ð55Þ
The physical displacement field u(r, t) can be expressed by the retarded Green�s function in the form
uðr; tÞ ¼
Z Z

Ĝðr� r0; t � t0Þf�ðr0; t0Þd3r0 dt0 ð56Þ
The retarded Green�s function Ĝðr; tÞ then is defined as the causal solution of
T ðrÞ � qm
o

2

ot2
1

� �
Ĝðr; tÞ þ 1dðtÞd3ðrÞ ¼ 0 ð57Þ
where d3(r) = d(x)d(y)d(z) and d(t) denote d-functions. To determine the displacement field u(r, t) it is con-
venient to introduce a tensor function G(r, t) which is defined by
T ðrÞ � qm
o2

ot2
1

� �
Gðr; tÞ þ 1qðr; tÞ ¼ 0 ð58Þ
Obviously G and Ĝ are then related by
Gðr; n; tÞ ¼
Z Z

Ĝðr� r0; t � t0Þqðr0; t0Þd3r0 dt0 ¼
Z

S

Z t

�1
Ĝðr� r0; t � t0Þvðr0; t0Þd3r0 dt0 ð59Þ
In (59)2 the causality of the retarded Green�s function Ĝðr; tÞ ¼ HðtÞĜðr; tÞ has been used (i.e. Ĝðr; tÞ 6¼ 0
only for t > 0). n indicates a set of geometric characteristics of the inclusion (for instance the semi-axes ai in
the case of an ellipsoidal inclusion).

Let us now confine to the isotropic medium with Lame constants k and l. Then (59) assumes the form
(Wang et al., in press) 14
Gðr; n; tÞ ¼ 1

l
g2ðr; n; tÞ1þ

1

qm
r�rfh1ðr; n; tÞ � h2ðr; n; tÞg ð60Þ
he derivation also holds for �non-local� densities q with the only constraint ��q(r, t)d3r dt < 1.

s(r) = 1,r 2 S and Hs(r) = 0, r 62 S.
n analogous expression also holds in two dimensions (Michelitsch et al., 2002).
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where the functions gi(r,n, t) and hi(r,n,t) are determined by a retarded potential of the form defined in (1)
and solve
D � 1

c2
i

o2

ot2

� �
giðr; n; tÞ þ qðr; tÞ ¼ 0 ð61Þ
and
o2

ot2
hiðr; n; tÞ ¼ giðr; n; tÞ ð62Þ
where ci denote the sound velocities of an isotropic medium
c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk þ 2lÞ

qm

s
; c2 ¼

ffiffiffiffiffiffi
l
qm

r
ð63Þ
corresponding to one longitudinal and two transversal acoustic waves. Now we can conveniently express
the �retarded Eshelby tensor� in terms of the scalar potentials (61) and (62). With Eqs. (55), (56), and (59)
we can write for the displacement field
ulðr; n; tÞ ¼ �Ckjrs�
0
rsojGklðr; n; tÞ ð64Þ
The strain can then be written as
�ilðr; n; tÞ ¼ �Ckjrs�
0
rsðP ijklðr; n; tÞÞðilÞ ð65Þ
where (li) indicates symmetrization with respect to the subscripts il. In (65) we have introduced the tensor
P ijklðr; n; tÞ ¼ oiojGklðr; n; tÞ ð66Þ

where Gkl(r,n, t) are the components of (60) for an isotropic medium.

Using (65) we define the retarded Eshelby tensor S(r,n, t) analogously to statics by
�ilðr; n; tÞ ¼ Silrsðr; n; tÞ�0
rs ð67Þ
where the retarded Eshelby tensor is given by
Silrsðr; n; tÞ ¼ �CkjrsðP ijklðr; n; tÞÞðilÞ ð68Þ
which is a tensor function in space and time. (68) shows that the retarded Eshelby tensor due to an inclusion
of arbitrary shape and inhomogeneous eigenstrain of the form (51) for an elastic isotropic medium is com-
pletely determined by scalar retarded potentials considered in this paper.

Eqs. (64)–(68) together with the potential function (59) hold generally in linear elastic anisotropic infinite
media. However, in the case of elastic anisotropy (60) is not valid and hence the Eshelby tensor (68) then
cannot be expressed in terms of scalar retarded potentials.
6. Conclusions

The solution of the inhomogeneous wave equation (retarded potentials) is analyzed for spatially inho-
mogeneous densities q(r, t) = q(r)d(t). The retarded potential due to a d(t)-type time dependence of a spatial
inhomogeneous source is considered in this paper. It represents a basic quantity in the theory of wave prop-
agation and diffraction and is of fundamental interest in mathematical physics. This retarded potential rep-
resents the integral kernel (propagator) for a source density of the form q(r,t) = q(r)k(t). The frequency
Fourier transform of this retarded potential represents the solution of the corresponding Helmholtz
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potential which is crucial for the time-harmonic problem (Michelitsch et al., 2003b). As an example of inter-
est for the dynamical modelling in the mechanics of solids the dynamic variant of Eshelby�s inclusion prob-
lem has been considered in Section 5. It has been shown there ((60) ff.) that for an isotropic medium the
retarded Eshelby tensor due to an inhomogeneous space–time eigenstrain distribution in the inclusion of
the form (51), is related to scalar retarded potentials as they were considered in Sections 2–4.

In materials sciences the results of this paper can be used for the modelling of the effective dynamic char-
acteristics of the material such as the dynamic moduli, the dispersion curves (in the frequency domain) and
the overall dynamic response of the microinhomogeneous material. Beside that, the present study is useful
for the description of phenomena of wave propagation, scattering and diffraction in heterogeneous (ran-
dom) media.
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